日期:2014-05-18 浏览次数:20913 次
public static class Spline { [System.Diagnostics.DebuggerDisplay("({X},{Y})")] public partial struct Vec2 { public float X, Y; public Vec2(float x, float y) {this.X = x; this.Y = y;} public static implicit operator PointF(Vec2 v) { return new PointF(v.X, v.Y); } public static implicit operator Vec2(PointF p) { return new Vec2(p.X, p.Y); } public static Vec2 operator +(Vec2 v1, Vec2 v2) { return new Vec2(v1.X + v2.X, v1.Y + v2.Y); } public static Vec2 operator -(Vec2 v1, Vec2 v2) { return new Vec2(v1.X - v2.X, v1.Y - v2.Y); } public static Vec2 operator *(Vec2 v, float f) { return new Vec2(v.X * f, v.Y * f); } public static Vec2 operator /(Vec2 v, float f) { return new Vec2(v.X / f, v.Y / f); } } /// <summary> /// '贝塞尔'内插。结果不包括头尾点 /// </summary> public static PointF[] InterpolateBezier(PointF p0, PointF p1, PointF p2, PointF p3, int samples) { PointF[] result = new PointF[samples]; for (int i = 0; i < samples; i++) { float t = (i + 1) / (samples + 1.0f); result[i] = (Vec2)p0 * (1 - t) * (1 - t) * (1 - t) + (Vec2)p1 * (3 * (1 - t) * (1 - t) * t) + (Vec2)p2 * (3 * (1 - t) * t * t) + (Vec2)p3 * (t * t * t); } return result; } public static PointF[] InterpolateCardinalSpline(PointF p0, PointF p1, PointF p2, PointF p3, int samples) { const float tension = 0.5f; Vec2 u = ((Vec2)p2 - (Vec2)p0) * (tension / 3) + p1; Vec2 v = ((Vec2)p1 - (Vec2)p3) * (tension / 3) + p2; return InterpolateBezier(p1, u, v, p2, samples); } /// <summary> /// '基数样条'内插法。 points为通过点,samplesInSegment为两个样本点之间的内插数量。 /// </summary> public static PointF[] CardinalSpline(PointF[] points, int samplesInSegment) { List<PointF> result = new List<PointF>(); for (int i = 0; i < points.Length - 1; i++) { result.Add(points[i]); result.AddRange( InterpolateCardinalSpline( points[Math.Max(i-1, 0)], points[i], points[i+1], points[Math.Min(i+2, points.Length-1)], samplesInSegment )); } result.Add(points[points.Length - 1]); return result.ToArray(); } }
------解决方案--------------------
随便搜了一个文章:http://blog.csdn.net/lixiaohuprogram/article/details/4325677
使用多项式方程来插值,假设你有n个点,就可以使用一个n-1阶多项式来插值它。因为n-1阶多项式正好是n个顶点(原点)。所以当你有3个点,那么就可以使用2阶曲线来插值它,得到过这三个点的二阶曲线上每一个点的坐标。
但是假设你有51个点,得到50阶多项式,显然计算量太大。于是有的使用最小二乘法,来拟合出低阶的多项式公式。不过这种方式不适合点数很多的拟合。
另外一种方式,比如有1000个点,每2个点作为一个样条(其实是两个点再加上两个斜率做为参数),保证样条两端的倒数(斜率)与相邻的样条的斜率相同,从而顺滑。
这些计算都非常简单,只不过用基本的矩阵解线性方程组的几个方法就行了。