日期:2014-05-20 浏览次数:21175 次
let NQueens n = let a = [|for i in 0..n -> true|] //某列是否使用的标志 let b = [|for i in 0..(2 * n - 1) -> true|] //斜负方向上是否使用的标志 let c = [|for i in 0..(2 * n - 1) -> true|] //斜正方向上是否使用的标志 let path = [|for i in 0..n -> 0|] //记录当前路径 //Solve n j 求解规模为n,第j行的解 let rec Solve n j = if j > n then //已经把当前状态的n行都求解完毕,可打印当前路径 printfn "%A" path.[1..] //打印当前结果 else //否则,要继续向下求解 for i in 1..n do //枚举当前行的所有列 //如果当前位置的列、斜正、斜负方向都可用,则使用 if (a.[i] && b.[i + j - 1] && c.[n - i + j]) then //标记状态 a.[i] <- false b.[i + j - 1] <- false c.[n - i + j] <- false path.[j] <- i //记录当前路径 do Solve n (j + 1) //求解下一行 //还原状态 a.[i] <- true b.[i + j - 1] <- true c.[n - i + j] <- true do Solve n 1 //从第一行开始求解 printfn "" List.iter NQueens [1..10] //求1到10皇后的所有解 System.Console.ReadKey()|>ignore
//自定义数据类型 type Queen = struct val x: int val y: int //构造函数 new(x: int, y: int) = { x = x; y = y } //重载Object.ToString() override this.ToString() = //字符串打印函数 sprintf "(%d,%d)" this.x this.y end let NQueens n = //对子问题求解 let rec Solve = function //第一行每一个位置都可以放置 | x when x = 1 -> [for y in 1..n -> [new Queen(1,y)]] //其他情况 | x -> //构造一个临时存放结果的变量 let mutable t = [[new Queen(0,0)]].Tail //枚举当前子问题的解 for i in Solve (x - 1) do //逐一尝试是否可以放置 for y in 1..n do if not((List.exists (fun (elem: Queen) -> elem.y = y ) i) //列可放置 ||(List.exists (fun elem -> elem = x + y) (List.map (fun (elem: Queen) -> elem.x + elem.y) i)) //斜负方向可放置 ||(List.exists (fun elem -> elem = x - y) (List.map (fun (elem: Queen) -> elem.x - elem.y) i))) //斜正方向可放置 then //把当前可行解放入临时空间 t <- t @ ([i @ [new Queen(x, y)]]) //返回当前可行解 t //求解并返回 Solve n //打印结果 NQueens 8 |> List.iteri (fun i elem -> printfn "%d:\t%A" (i + 1) elem) System.Console.ReadKey()|>ignore
type Queen =
struct
val x: int
val y: int
new(x: int, y: int) = { x = x; y = y }
override this.ToString() =
sprintf "(%d,%d)" this.x this.y
end
let NQueens n =
let rec Solve = function
| x when x = 1 ->
[for y in 1..n -> [new Queen(1,y)]]
| x ->
//求出当前子问题解集与要测试是否能放置的点的空间
[for sub in Solve (x - 1) do
for y in 1..n -> (sub, y)]