日期:2014-05-17  浏览次数:21004 次

权限控制矩阵
想写一个权限系统,在查资料的时候看到了权限控制矩阵这个名词,但找不到相关的资料,希望有人指点一下这是个什么,或给我个简单的例子或者相关资料,谢谢。

------解决方案--------------------
权限系统(1)--基本模式

在系统中发生的事情,抽象的说都是某个主体(subject)在某个资源(resource)上执行了某个操作(operation)。
subject --[operation]--> resource 
所谓权限管理,就是在这条信息传递路径中加上一些限制性控制。
主体试图去做的 limited by 系统允许主体去做的 = 主体实际做的。
可以看到,权限控制基本对应于filter模式。subject试图去做的事情应该由业务逻辑决定,因而应该编码在业务系统中。

先考虑最粗粒度的控制策略,控制点加在subject处,即无论从事何种操作,针对何种资源,我们首先需要确认subject是受控的。只有通过认证的用户才能使用系统功能,这就是authentication。boolean isAllowed subject)
稍微复杂一些,控制可以施加在subject和operation的边界处(此时并不知道具体进行何种操作),称为模块访问控制,即只有某些用户才能访问特定模块。isAllowed(subject, operation set)
第三级控制直接施加在operation上,即操作访问控制。operation知道resource和subject(但它尚没有关于resource的细节知识),我们能够采取的权限机制是bool isAllowed(subject, operation, resource), 返回true允许操作,返回false则不允许操作。

最简单的情况下,subject与resource之间的访问控制关系是静态的,可以直接写成一个权限控制矩阵

for operationA:
resourceA resourceB
subjectA 1 0
subjectB 0 1


isAllowed(subjectA, resourceA)恒等于true

如果多个operation的权限控制都可以通过这种方式来表示,则多个权限控制矩阵可以叠加在一起

for operationA, operationB:
resourceA resourceB
subjectA 10 01
subjectB 01 11

当subject和resource的种类很多时,权限控制矩阵急剧膨胀,它的条目数是N*M。很显然,我们需要进行矩阵分解。这也是最基本的控制手段之一: 在系统中增加一个瓶颈,或者说寻找到隐含的结构。
subject_resource = subject_role * role_resource
这样系统权限配置条目的数量为 N*R + R*M, 如果R的数目远小于subject和resource,则实现简化。这称为RBAC(role based access control),它的一个额外好处是权限系统的部分描述可以独立于subject存在,即在系统中没有任何用户的时候,通过角色仍然可以表达部分权限信息。可以说角色是subject在权限系统中的代理(分解)。

有时候引入一个瓶颈还不过瘾,有人引入组的概念,与role串联,
subject_resource = subject_group_role * role_resource
或着group与role并联,
subject_resource = subject_group * group_resource

与role稍有不同,一般情况下group的业务含义更加明显,可能对应于组织结构等。将组织机构明确引入权限体系,有的时候比较方便,但对于权限系统自身的稳定性而言,未见得有什么太大的好处。并联模式有些多余,串联模式又过于复杂,细节调整困难,特别是多条控制路径造成的冲突情况。一般情况下,我不提倡将group引入权限控制中。

比操作控制更加深入的控制就是数据控制了,此时需要对于resource的比较全面的知识。虽然表面上,仍然是
boolean isAllowed(subject, operation, resource),但控制函数需要知道resource的细节。例如行级控制(row-level)或者列级控制(column-level)的实现。因为我们一般情况下不可能将每一个条目都建模为独立的resource,而只能是存在一个整体描述,例如所有密级为绝密的文档。在witrix平台中,数据控制主要通过数据源的filter来实现,因为查询条件(数据的定位条件)已经被对象化为Query类,所以我们可以在合适的地方自由的追加权限控制条件。

以上的讨论中,权限控制都是根据某些静态描述信息来进行的,但现实世界是多变的。最简单的,当subject从事不同业务时,对应于同一组资源,也可能对应的权限控制并不同(在witrix平台中,对应于IDataSource的模式切换)。更复杂一些, 在不同的时刻, 我们需要根据其他附加信息来作出是否允许操作的判断, 即此时我们权限设置的不仅仅是一些静态的描述信息, 而是一个完整的控制函数, 这就是所谓的工作流权限控制,一种动态权限控制.


权限系统(2)--operation 

权限控制可以看作一个filter模式的应用, 这也符合AOP思想的应用条件。在一个简化的图象中,我们只需要将一个判别函数 isAllowed(subject, operation, resource)插入到所有安全敏感的函数调用之前就可以了。虽然概念上很完美,具体实现的时候仍然有一些细节上的问题。基本的困难在于很难在最细的粒度上指定权限控制规则(连续的?动态的?可扩展的?),因而我们只能在一些关键处指定权限规则,或者设置一些整体性的权限策略,然后通过特定的推理来推导出细粒度的权限规则,这就引出结构的问题。我们需要能够对权限控制策略进行有效的描述(控制策略的结构),并且决定如何与程序结构相结合。subject, operation和resource为了支持推理,都可能需要分化出复杂的结构,而不再是简单的原子性的概念。而在与程序结构结合这一方面,虽然AOP使得我们可以扩展任何函数,但这种扩展需要依赖于cutpoint处所能得到的信息,因而权限控制的有效实施也非常依赖于功能函数本身良好的设计。有的时候因为需要对结构有过于明确的假定,权限控制的实现不得不牺牲一定的通用性。

下面我们将分别讨论一下operation, subject和resource的结构分解的问题。首先是operation。
说到推理结构,让人最先想起的就是决策树,树形结构,在面向对象语言中可以对应于继承。金字塔式的树形结构也正是在现实世界中我们应用最多的控制结构。通过层层分解,operation的结构可以组织为一棵树,
应用程序 ==> 各个子系统 ==> 每个子系统的功能模块 ==> 子功能模块 
==> 每个模块的功能点(具有明确的业务含义) ==> 每个功能点对应的访问函数(程序实现中的结构)
一个常见的需求是根据权限配置决定系统菜单树的显示,一般控制用户只能看到自己有权操作的功能模块和功能按钮。这种需求的解决方法是非常直接的。首先,在后台建立子系统到功能模块,功能模块到功能点以及功能点到实现函数之间的映射表(如果程序组织具有严格规范,这甚至可以通过自动搜集得到)。然后,在权限配置时建立用户与功能点之间的关联。此时,通过一个视图,我们就可以搜集到用户对哪些功能模块具有访问权限的信息。

为了控制菜单树的显示,witrix平台中的SiteMap采用如下策略:
1. 如果用户对某个子功能具有操作权限,则所有父菜单项都缺省可用
2. 如果用户对某个功能具有操作权限,并且标记为cascade,则所有子菜单项都自动缺省可用
3. 如果明确指定功能不可用,则该菜单及子菜单都强制不可用
4. 如果明确指定功能对所有人可用,则不验证权限,所有子菜单自动缺省可用
4. 强制设定覆盖缺省值
5. 不可用的菜单缺省不可见
6. 明确标记为可见的菜单即使不可用也可见
7. 父菜单可见子菜单才可见
我们通过预计算来综合考虑这些相互影响的控制策略。尽量将推导运算预先完成也是解决性能问题的不二法门。

在witrix平台中,每一次网络访问的url都符合jsplet框架所要求的对象调用格式,需要指定objectName和objectEvent参数,这就对应于功能点的访问函数。访问控制点集中在