谁能可以和我说说,函数递归。最好有例子。谢谢了!!CSDN的朋友们。
谁能可以和我说说,函数递归。最好有例子。谢谢了!!CSDN的朋友们。
------解决方案--------------------递归是一种重要的编程技术。该方法用于让一个函数从其内部调用其自身。一个示例就是计算阶乘。0 的阶乘被特别地定义为 1。 更大数的阶乘是通过计算 1 * 2 * ...来求得的,每次增加 1,直至达到要计算其阶乘的那个数。
下面的段落是用文字定义的计算阶乘的一个函数。
“如果这个数小于零,则拒绝接收。如果不是一个整数,则将其向下舍入为相邻的整数。如果这个数为 0,则其阶乘为 1。如果这个数大于 0,则将其与相邻较小的数的阶乘相乘。”要计算任何大于 0 的数的阶乘,至少需要计算一个其他数的阶乘。用来实现这个功能的函数就是已经位于其中的函数;该函数在执行当前的这个数之前,必须调用它本身来计算相邻的较小数的阶乘。这就是一个递归示例。
递归和迭代(循环)是密切相关的 — 能用递归处理的算法也都可以采用迭代,反之亦然。确定的算法通常可以用几种方法实现,您只需选择最自然贴切的方法,或者您觉得用起来最轻松的一种即可。
显然,这样有可能会出现问题。可以很容易地创建一个递归函数,但该函数不能得到一个确定的结果,并且不能达到一个终点。这样的递归将导致计算机执行一个“无限”循环。下面就是一个示例:在计算阶乘的文字描述中遗漏了第一条规则(对负数的处理) ,并试图计算任何负数的阶乘。这将导致失败,因为按顺序计算 -24 的阶乘时,首先不得不计算 -25 的阶乘;然而这样又不得不计算 -26 的阶乘;如此继续。很明显,这样永远也不会到达一个终止点。
因此在设计递归函数时应特别仔细。如果怀疑其中存在着无限递归的可能,则可以让该函数记录它调用自身的次数。如果该函数调用自身的次数太多,即使您已决定了它应调用多少次,就自动退出。
这是一道动态规划题,动态方程如下:
f[i-1,j]+f[i,j-i]+1 ((j mod i=0) and (j div i=1))
f[i,j]:= f[i-1,j] (i>=j)
f[i-1,j]+f[i,j-i] (else)
s:=f(k,n-k)
本题可以用循环来实现递推,也可以考虑用递归求解。主过程如下:
方案一:
Procedure work(I,j:longint; var s:longint);
Var t:longint;
Begin
If (i=1) or (j=1) then s:=1
Else if (i=0) or (j=0) then s:=0
Else begin
if (j mod i=0) and (j div i=1) then
begin
work(i-1,j,s);
t:=s;
work(i,j-1,s);
s:=s+t+1;
end
else if (i>=j) then
work(i-1,j)
else begin
work(i-1,j,s);
t:=s;
work(I,j-1,s);
s:=s+t;
end;
End;
方案二:procedure search(v,w,last:byte);
var i:byte;
begin
if w=0 then inc(count)
else
if w=1 then
if v>=last then search(0,0,0) else
else for i:=last to v-1 do search(v-i,w-1,i);
end;
可以看出,方案一的程序较为冗长,消耗栈空间较大;而方案二较为简洁明了,所用的栈空间也较小,效率较高。因此,使用递归算法也有一个优化问题。算法的简洁与否直接制约了程序的可行性和效率。
[总结]
递归使一些复杂的问题处理起来简单明了,尤其在学习算法设计、数据结构时更能体会到这一点。但是,递归在每一次执行时都要为局部变量、返回地址分配栈空间,这就降低了运行效率,也限制了递归的深度。因此,在必要的时候可以只使用递归的思想来求解,而程序则转用非递归的方式书写。
下面仍然是阶乘函数,这次是用 JScript 代码编写的。
// 计算阶乘的函数。如果传递了
// 无效的数值(例如小于零),
// 将返回 -1,表明发生了错误。若数值有效,
// 把数值转换为最相近的整数,并
// 返回阶乘。
function factorial(aNumber) {
aNumber = Math.floor(aNumber); // 如果这个数不是一个整数,则向下舍入。
if (aNumber < 0) { // 如果这个数小于 0,拒绝接收。
return -1;
}
if (aNumber == 0) { // 如果为 0,则其阶乘为 1。
return 1;
}
else return (aNumber * factorial(aNumber - 1)); // 否则,递归直至完成。