日期:2014-05-16  浏览次数:20705 次

linux 性能相关
转载本站文章请注明,转载自:扶凯[http://www.php-oa.com]

本文链接: http://www.php-oa.com/2009/02/03/iostat.html

以前一直不太会用这个参数。现在认真研究了一下iostat,因为刚好有台重要的服务器压力高,所以放上来分析一下.下面这台就是IO有压力过大的服务器



$iostat -x 1
Linux 2.6.33-fukai (fukai-laptop)          _i686_    (2 CPU)
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           5.47    0.50    8.96   48.26    0.00   36.82

Device:         rrqm/s   wrqm/s     r/s     w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
sda               6.00   273.00   99.00    7.00  2240.00  2240.00    42.26     1.12   10.57   7.96  84.40
sdb               0.00     4.00    0.00  350.00     0.00  2068.00     5.91     0.55    1.58   0.54  18.80
rrqm/s:  每秒进行 merge 的读操作数目。即 delta(rmerge)/s
wrqm/s:  每秒进行 merge 的写操作数目。即 delta(wmerge)/s
r/s:          每秒完成的读 I/O 设备次数。即 delta(rio)/s
w/s:        每秒完成的写 I/O 设备次数。即 delta(wio)/s
rsec/s:   每秒读扇区数。即 delta(rsect)/s
wsec/s: 每秒写扇区数。即 delta(wsect)/s
rkB/s:     每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。(需要计算)
wkB/s:    每秒写K字节数。是 wsect/s 的一半。(需要计算)
avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。delta(rsect+wsect)/delta(rio+wio)
avgqu-sz: 平均I/O队列长度。即 delta(aveq)/s/1000 (因为aveq的单位为毫秒)。
await:   平均每次设备I/O操作的等待时间 (毫秒)。即 delta(ruse+wuse)/delta(rio+wio)
svctm:  平均每次设备I/O操作的服务时间 (毫秒)。即 delta(use)/delta(rio+wio)
%util:     一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的。即 delta(use)/s/1000 (因为use的单位为毫秒)

如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘
可能存在瓶颈。
idle小于70% IO压力就较大了,一般读取速度有较多的wait.
同时可以结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)
另外 await 的参数也要多和 svctm 来参考。差的过高就一定有 IO 的问题。
avgqu-sz 也是个做 IO 调优时需要注意的地方,这个就是直接每次操作的数据的大小,如果次数多,但数据拿的小的话,其实 IO 也会很小.如果数据拿的大,才IO 的数据会高。也可以通过 avgqu-sz × ( r/s or w/s ) = rsec/s or wsec/s.也就是讲,读定速度是这个来决定的。







另外还可以参考
svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。
队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。


  别人一个不错的例子.(I/O 系统 vs. 超市排队)

举一个例子,我们在超市排队 checkout 时,怎么决定该去哪个交款台呢? 首当是看排的队人数,5个人总比20人要快吧? 除了数人头,我们也常常看看前面人购买的东西多少,如果前面有个采购了一星期食品的大妈,那么可以考虑换个队排了。还有就是收银员的速度了,如果碰上了连 钱都点不清楚的新手,那就有的等了。另外,时机也很重要,可能 5 分钟前还人满为患的收款台,现在已是人去楼空,这时候交款可是很爽啊,当然,前提是那过去的 5 分钟里所做的事情比排队要有意义 (不过我还没发现什么事情比排队还无聊的)。

I/O 系统也和超市排队有很多类似之处:

r/s+w/s 类似于交款人的总数
平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数
平均服务时间(svctm)类似于收银员的收款速度
平均等待时间(await)类似于平均每人的等待时间
平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少
I/O 操作率 (%util)类似于收款台前有人排队的时间比例。

我们可以根据这些数据分析出 I/O 请求的模式,以及 I/O 的速度和响应时间。

下面是别人写的这个参数输出的分析

# iostat -x 1
avg-cpu: %user %nice %sys %idle
16.24 0.00 4.31 79.44
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/