日期:2014-05-16  浏览次数:20601 次

漫谈事务与分布式事务(1)- 理解 ACID

最近看了一点资料,准备写一个大话题。

?
事务,是所有数据库讲义中最核心的话题。它本质上是一系列连续的,逻辑相关的数据库操作的组合。随便翻开一本书,都会告诉你,事务必须满足下面四个属性:
?
ACID(Atomic,Consistency,Isolation,Durability)
?
按照属性即实体的观点:数据库事务就是 ACID,符合 ACID 的就是数据库事务。因此我们可以得出一个公式:
?
数据库事务 = ACID
?
抛开课本上那些苦涩难懂的定义,如何理解 ACID ??
?
首先,我们不用去读 Jim Gray 的《Transaction Processing: Concepts and Techniques》。——为什么数据库能在半个世纪内如此受欢迎,以至于取代了其他的数据存储方式? 显然是因为它能够满足业务的需要。那么业务最需要什么??
?
数据的可靠性
?
用学术的语言说是数据的“完整性约束”——可靠的数据一定是符合“完整性约束”的数据。而“完整性约束”是什么? 学术语言说“完整性约束”是建立在业务数据集上的“不变式(Invariant)”。那“不变式(Invariant)”又是什么?...?
?
呃。抛开这些学术概念,业务上的数据可靠性可以从两方面理解: 数据首先必须可靠的存储,然后必须可靠的更新。
?
记住,可靠的意义是符合数据的?完整性约束?——可以简单的看做业务规则。例如,账户金额不能为负,入出账必须平衡都是规则。
?
接下来,ACID 的含义?已经不难理解了:
?
A?- 原子化更新。业务操作要么全部完成, 要么全都不做, 不容忍中间状态。
?
C?- 事务开始前和结束后,数据的完整性(约束)不会被破坏。注意了,ACID 定义的 Consistency 跟现在大家常说的一致性(数据在分布式节点的一致)不一样,这里采用学术界的原始定义。
?
? ? 这儿再一次提到了?完整性约束。区别是,ACID 把 C 限制在一个事务单元内,强调事务必须保证数据从一个一致性状态进入另一个一致性状态,事务的结束和数据的一致性之间没有时差。
?
I?- 事务隔离是业务选择的。数据库定义了 4 种隔离级别:
?
? ??Read committed
?
? ? 业务的中间状态对外不可见。很容易找到的一个例子是:甲向乙转账,银行先向乙的账户转入 100 元,再从甲的账户扣除 100 元。在银行扣款前,甲、乙的账户里都有 100 元。如果这一中间状态对外可见——甲和乙就有机会都花掉这 100 元,让银行扣款失败,而且没有办法追回。
?
? ??Repeatable reads / Serializable
?
? ? 这两个级别都在限制事务执行时,其他事务提交的更新是否可见。但是程度不同。Repeatable reads 只限制行,而 Serializable 限制整个数据集。
?
? ? 举个简单的例子来理解:生成业务报表,过程先查询订单明细数据,再查询汇总数据。如果业务在处理完明细数据后,又读到了其他业务修改的订单金额 (这会违反 Repeatable reads),或者又读到了新的订单 (这会违反 Serializable),那么最终得到的汇总数据就会与明细数据不一致,这对于商业敏感的报表是无法接受的。
?
? ??Read uncommitted
?
? ? 业务的中间状态对外可见,不需要事务隔离。这样看似危险,但不一定会产生业务问题。例如,在一个真实的转账里:银行会先从甲的账户扣除 100 元,再向乙的账户转入 100 元。这样,在乙账户到账前,甲的账户已经扣掉了 100 元。显然,即使这个中间状态对外可见,甲、乙也没有任何机会造成银行转账失败。
?
D?- 业务数据不会丢失。事务结束后,除非数据被其他业务更新,否则不会变化。
?
理解 ACID
?
在 ACID 里,数据的可靠性是业务的根本需求。
?
如果不满足 A