日期:2014-05-16  浏览次数:20463 次

MapReduce初探之一~~基于Mongodb实现标签统计

MapReduce?是一种编程模型,是 Google 提出的一种软件架构,主要应用于分布式系统上。Google对其原始的定义是“?MapReduce is a framework for computing?certain kinds of distributable problems?using a large number of computers (nodes),?collectively referred to as a cluster.”

可见MapReduce主要为集群分布式计算而诞生的,顶顶大名的分布式框架Hadoop就是MapReduce的一种实现。其中心思想是Map(映射)函数和Reduce(化简)函数,我的简单理解就是先将问题按照一定的规律,一一细分并映射到列表中,然后对那些列表进行适当的合并,从而得出想要的结果,大致的工作流见于下图:?

咋一看,怎么就是分布式计算的原理图解了?论道分布式计算,就扯远了,回到主题上,这次是讨论如何利用MapReduce的思想,实现Blog文章标签的统计!

按照传统的关系数据库设计,统计标签,无非就是建一张标签表,我们姑且叫左Tb_tags,大致的结构就是id和value,然后关联id到Blog表的外键上。恩,不差错。可是这次,NodeBlog的数据库用的可是Mongodb哦,难道照搬即可?

我们先看看在mongodb下,Blog表是如何描述的:

var BlogScheme = new db.Schema({
    title : String,
    desc : String,
    author : String,
    body : String,
    tags : [String],
    count: { type:Number, default:0 },
    hidden : { type: Boolean, default: false },
    date : { type: Date, default: Date.now },
    comments : [{ img: String, name: String, body: String, date: Date }],
    meta : {
        votes: Number,
        favs:  Number
    }
});

按照mongodb的设计,每篇Blog都是整篇存储的,与其它表基本没有关联,这也是NoSQL的精髓啊!但是这样子,我们该如何去统计Blog的标签tag呢?

办法有几个:1、遍历查询全部的Blog,取出Blog的实体,然后对其中的tags字段进行统计;(这个简单,绝对可行,只是效率就...)

? ? ? ? ? ? ? ? ? ? ?2、?对1中的方法采用多线程进行查询,然后同步共享的数据;(这个在实现与现今的硬件上,理论绝对比方法1高效,但是实现的难度,特别是数据的同步那块就...)

? ? ? ? ? ? ? ? ? ? ?3、让MapReduce来帮帮忙吧!

MapReduce中,Map函数和Reduce函数是交给用户实现的,这两个函数定义了任务本身。

  • Map函数:接受一个键值对(key-value pair),产生一组中间键值对。MapReduce框架会将map函数产生的中间键值对里键相同的值传递给一个reduce函数。
  • Reduce函数:接受一个键,以及相关的一组值,将这组值进行合并产生一组规模更小的值(通常只有一个或零个值)。

对照我们的需求,统计Blog中的tags,那么Map函数应该处理的是:记录tag出现的次数,这个越小越好;然后Reduce函数对Map函数产生的数据进行合并,并返回单一的结果,即是某个tag出现的总次数!下面来一个实例说明:

/**
 * 统计Blog中标签出现的次数,采用MapReduce进行实时计算
 * @param callback --> result: _id(tag name), value(occupied count)
 */
exports.tagStatistical = function(callback){
    var o = {};
    o.map = function () {
        this.tags.forEach(function(z){  //z即是具体的某个tag了
            emit(z,1);                    //对某个tag出现一次就计数一次
        });
    }
    o.reduce = function (k, values) {
        var total=0;
        for(var i=0;i<values.length;i++){
            total += values[i];
        }
        return total;
    }
    Blog.mapReduce(o, function (err, results) {
        if(err) {
            console.log("mapReduce err:"+err);
        }
        console.log(results);
        callback(results);
    })
} 

最后我们通过callback函数获得的result事实上就是(tag,count)的Map了,这是如何实现的?这点,就有赖于Mongodb的高级特性了,Mongodb对于?MapReduce?是骨子里支持的,因而这种运算的效率是有保障的!难怪Mongodb的掌门人叫嚣:不是Mongodb不行,是你们不懂Mongodb!??

总结一下,尽管这篇Blog讲得有点乱,但是主要还是想讲清楚MapReduce的思想!?MapReduce的实现五花八门,但是其中心思想~map和reduce才是我们必须理解和掌握的!

?

本文由zhiweiofli编辑发布,转载请注明出处,点击,谢谢。