日期:2014-05-16 浏览次数:20551 次
与其它关系型数据库
一样,二维表同样是GP中最重要的存储数据对象。只不过为了更好的支持数据仓库海量数据的访问,GP在表这个层面为我们提供了更多更好的选项。
从数据存储方式上看,GP的表可以分成面向行存储的普通堆积表
和面向列存储的AOT表
(APPEND ONLY TABLE)(当然AOT表也可以是按行存储的,但是按列存储必须是AOT表)。
这样,我们在设计应用上可以获得相当的灵活性。比如经常需要更新的数据,或者较小的维度数据,应该使用普通堆积表存储
。下面是两个创建普通堆积表的例子。
例子一
CREATE TABLE SALES (PROD_ID numeric NOT NULL , CUST_ID numeric NOT NULL , TIME_ID DATE NOT NULL , CHANNEL_ID numeric NOT NULL , PROMO_ID numeric NOT NULL , QUANTITY_SOLD numeric(10,2) NOT NULL , AMOUNT_SOLD numeric(10,2) NOT NULL) distributed by (prod_id,cust_id,time_id,channel_id,promo_id);?
例子二
CREATE TABLE SALES (PROD_ID numeric NOT NULL , CUST_ID numeric NOT NULL , TIME_ID DATE NOT NULL , CHANNEL_ID numeric NOT NULL , PROMO_ID numeric NOT NULL , QUANTITY_SOLD numeric(10,2) NOT NULL , AMOUNT_SOLD numeric(10,2) NOT NULL) distributed randomly;
?
与
其它数据库相比,GP的表最大的不同是它一定是分区的,也就是表中的所有记录都会依据相关算法打散,分布到所有的segment当中,从而在充分利用硬件
资源的同时,最大化访问数据的IO,这种特性对于数据仓库应用是非常有帮助的。GP提供两种
打散数据的算法,一种是HASH算法,
参见例子一,在定义表的
时候,通过distributed
by指定表中的某个列或者某个列的组合作为HASH键,相同HASH键的记录会放在同一个SEGMENT当中。所以,GP建议一般选择记录分布均匀的键作
为HASH键使用
,从而保证表中的记录可以均匀分布到所有SEGMENT上。如果表上定义了主键或者唯一键,则这些键值列必须作前导列出现在分布键当中。
假如例子一的PROD_ID是主键或者唯一键,那么它必须出现在HASH键中,并且放在第一位。
如果定义表的时候,没有指定distributed子句,系统使用第一个列作为HASH键使用。另一种数据打散的算法是平均分配法
(ROUND-
ROBIN),参见例子二, 假设有三个段,那么这种算法会把第一条记录放在段1,
第二条记录放在段2,第三条记录放在段3,第四条记录放在段四,以此类推,直到所有记录发放完为止。这种算法比较适合表中的字段存在严重数据倾斜的情况
。
???
在数据仓库中,对于存储海量少变化历史数据的事实表的访问,会产生大量IO。这些表除了记录多外(纵向),同时也很宽
。比如几十列,甚至上百列的表也很常
见。但是在进行数据分析和挖掘过程中,我们可能只用到这些列的很小一部分内容
,而传统的按行存储的表,在访问时总是会访问记录中的所有列,导致很多无效
IO,当由于表横向尺寸过大,按行存储的表还会出现行链接,这会使无效IO的问题更严重。在GP中,对于这种情况应该考虑使用面向列存储的AOT表
,从而
大幅高IO效率,获取数据查询性能的收益。下面是AOT表定义的例子。
例子三
CREATE TABLE SALES (PROD_ID numeric NOT NULL , CUST_ID numeric NOT NULL , TIME_ID DATE NOT NULL , CHANNEL_ID numeric NOT NULL , PROMO_ID numeric NOT NULL , QUANTITY_SOLD numeric(10,2) NOT NULL , AMOUNT_SOLD numeric(10,2) NOT NULL) WITH (appendonly=true,orientation=column,compresstype=zlib,COMPRESSLEVEL=5) distributed by (prod_id,cust_id,time_id,channel_id,promo_id);
?
例子四
CREATE TABLE SALES (PROD_ID numeric NOT NULL , CUST_ID numeric NOT NULL , TIME_ID DATE NOT NULL , CHANNEL_ID numeric NOT NULL , PROMO_ID numeric NOT NULL , QUANTITY_SOLD numeric(10,2) NOT NULL , AMOUNT_SOLD numeric(10,2) NOT NULL) WITH (appendonly=true,orientation=column,compresstype=QUICKLZ,COMPRESSLEVEL=1) distributed by (prod_id,cust_id,time_id,channel_id,promo_id);?
???
现在硬件系统往往IO效率跟不上CPU处理的速度,而数据仓库应用恰恰是IO敏感型的应用,所以很多数据仓库系统上,我会看到CPU很闲,但是出现大量
IO等待的情况。所以通过压缩,尤其是面向列压缩,允许我们牺牲一定的CPU效率进一步换取IO效率,提高系统的的吞吐量。GP的AOT表允许使用两种压
缩算法,一种是ZLIB
,它的压缩率较高,对CPU的消耗较多,GP中可以指定1到9
9个级别。1的压缩比最小,9最大,参见例子三。另一种算法是QUICKLZ
,它的压缩比小,这能设置1,造成的CPU负载也比ZLIB小。
???? AOT表虽然查询和加载数据的效率很高,但是如它的名字那样它只能支持SELECT,INSERT,truncate操作,不支持UPDATE和DELETE操作。所以它只适合存放经过处理基本最终无变化的历史数据,用来提供高效的查询访问
。
????
????
从数据数据存放的生命周期看,前面介绍的表都称之为永久表
,这些表的记录不会因为事务的结束和会话的断开而消失。而业务中,我们经常要使用到临时数据集
合,如果用永久表存放中间结果,一方面是在并发环境中数据不安全,另一方面频繁的删除表中的记录或者删除表,会导致大量碎片,在字典层面造成瓶颈。因此
GP也支持临时表,不同连接共享相同的表结构。比如下面的两个例子。
例子五