日期:2014-05-18  浏览次数:20456 次

提高查询速度的注意事项
Assembly code
1、应用程序中,保证在实现功能的基础上,尽量减少对数据库的访问次数;通过
搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担;能够分
开的操作尽量分开处理,提高每次的响应速度;在数据窗口使用SQL时,尽量把使
用的索引放在选择的首列;算法的结构尽量简单;在查询时,不要过多地使用通配
符如SELECT * FROM T1语句,要用到几列就选择几列如:SELECT COL1,COL2 FROM
T1;在可能的情况下尽量限制尽量结果集行数如:SELECT TOP 300
COL1,COL2,COL3 FROM T1,因为某些情况下用户是不需要那么多的数据的。不要在
应用中使用数据库游标,游标是非常有用的工具,但比使用常规的、面向集的SQL
语句需要更大的开销;按照特定顺序提取数据的查找。  

2、 避免使用不兼容的数据类型。例如float和int、char和varchar、binary和
varbinary是不兼容的。数据类型的不兼容可能使优化器无法执行一些本来可以进
行的优化操作。例如:  
SELECT name FROM employee WHERE salary > 60000  
在这条语句中,如salary字段是money型的,则优化器很难对其进行优化,因为60000
是个整型数。我们应当在编程时将整型转化成为钱币型,而不要等到运行时转化。  

3、 尽量避免在WHERE子句中对字段进行函数或表达式操作,这将导致引擎放弃
使用索引而进行全表扫描。如:  
SELECT * FROM T1 WHERE F1/2=100
应改为:  
SELECT * FROM T1 WHERE F1=100*2

SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’
应改为:
SELECT * FROM RECORD WHERE CARD_NO LIKE ‘5378%’

SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
应改为:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询
时要尽可能将操作移至等号右边。

4、 避免使用!=或<>、IS NULL或IS NOT NULL、IN ,NOT IN等这样的操作符,
因为这会使系统无法使用索引,而只能直接搜索表中的数据。例如:  
SELECT id FROM employee WHERE id != 'B%'  
优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。
 
5、 尽量使用数字型字段,一部分开发人员和数据库管理人员喜欢把包含数值信
息的字段
设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在
处理查询和连接回逐个比较字符串中每一个字符,而对于数字型而言只需要比较一
次就够了。

6、 合理使用EXISTS,NOT EXISTS子句。如下所示:
1.SELECT SUM(T1.C1)FROM T1 WHERE(
(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
2.SELECT SUM(T1.C1) FROM T1WHERE EXISTS(
  SELECT * FROM T2 WHERE T2.C2=T1.C2)
两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁
定的表扫描或是索引扫描。
如果你想校验表里是否存在某条纪录,不要用count(*)那样效率很低,而且浪费服
务器资源。可以用EXISTS代替。如:
IF (SELECT COUNT(*) FROM table_name WHERE column_name = 'xxx')
可以写成:
IF EXISTS (SELECT * FROM table_name WHERE column_name = 'xxx')

经常需要写一个T_SQL语句比较一个父结果集和子结果集,从而找到是否存在在父
结果集中有而在子结果集中没有的记录,如:
1.SELECT a.hdr_key FROM hdr_tbl a---- tbl a 表示tbl用别名a代替
WHERE NOT EXISTS (SELECT * FROM dtl_tbl b WHERE a.hdr_key = b.hdr_key)  

2.SELECT a.hdr_key FROM hdr_tbl a
LEFT JOIN dtl_tbl b ON a.hdr_key = b.hdr_key WHERE b.hdr_key IS NULL  

3.SELECT hdr_key FROM hdr_tbl
WHERE hdr_key NOT IN (SELECT hdr_key FROM dtl_tbl)  
  三种写法都可以得到同样正确的结果,但是效率依次降低。

7、 尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法
利用索引。   
见如下例子:
SELECT * FROM T1 WHERE NAME LIKE ‘%L%’
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’
SELECT * FROM T1 WHERE NAME LIKE ‘L%’
即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不
对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。

8、 分利用连接条件,在某种情况下,两个表之间可能不只一个的连接条件,这
时在 WHERE 子句中将连接条件完整的写上,有可能大大提高查询速度。
例:
SELECT SUM(A.AMOUNT) FROM ACCOUNT A,CARD B WHERE A.CARD_NO = B.CARD_NO  
SELECT SUM(A.AMOUNT) FROM ACCOUNT A,CARD B WHERE A.CARD_NO = B.CARD_NO
AND A.ACCOUNT_NO=B.ACCOUNT_NO
第二句将比第一句执行快得多。

9、 消除对大型表行数据的顺序存取
  尽管在所有的检查列上都有索引,但某些形式的WHERE子句强迫优化器使用
顺序存取。如:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR  
order_num=1008
解决办法可以使用并集来避免顺序存取:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001  
UNION  
SELECT * FROM orders WHERE order_num=1008  
这样就能利用索引路径处理查询。

10、 避免困难的正规表达式
  LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时
间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”  
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如
果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询
时就会利用索引来查询,显然会大大提高速度。
11、 使用视图加速查询
把表的一个子集进行排序并创建视图,有时能加速查询。它有助于避免多重排序
操作,而且在其他方面还能简化优化器的工作。例如:  
SELECT cust.name,rcvbles.balance,……other columns  
FROM cust,rcvbles  
WHERE cust.customer_id = rcvlbes.customer_id  
AND rcvblls.balance>0  
AND cust.postcode>“98000”  
ORDER BY cust.name  
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个
视图中,并按客户的名字进行排序:  
CREATE VIEW DBO.V_CUST_RCVLBES
AS  
SELECT cust.name,rcvbles.balance,……other columns  
FROM cust,rcvbles  
WHERE cust.customer_id = rcvlbes.customer_id  
AND rcvblls.balance>0  
ORDER BY cust.name  

然后以下面的方式在视