Oracle 索引结构、内部管理
摘要:本文对B树索引的结构、内部管理等方面做了一个全面的介绍。同时深入探讨了一些与B树索引有关的广为流传的说法,比如删除记录对索引的影响,定期重建索引能解决许多性能问题等。
?
1.B树索引的相关概念
????? 索引与表一样,也属于段(segment)的一种。里面存放了用户的数据,跟表一样需要占用磁盘空间。只
不过,在索引里的数据存放形式与表里的数据存放形式非常的不一样。在理解索引时,可以想象一本书,其中书的内容就相当于表里的数据,而书前面的目录就相当于该表的索引。同时,通常情况下,索引所占用的磁盘空间要比表要小的多,其主要作用是为了加快对数据的搜索速度,也可以用来保证数据的唯一性。
????? 但是,索引作为一种可选的数据结构,你可以选择为某个表里的创建索引,也可以不创建。这是因为一旦创建了索引,就意味着oracle对表进行DML(包括INSERT、UPDATE、DELETE)时,必须处理额外的工作量(也就是对索引结构的维护)以及存储方面的开销。所以创建索引时,需要考虑创建索引所带来的查询性能方面的提高,与引起的额外的开销相比,是否值得。
????? 从物理上说,索引通常可以分为:分区和非分区索引、常规B树索引、位图(bitmap)索引、翻转(reverse)索引等。其中,B树索引属于最常见的索引,由于我们的这篇文章主要就是对B树索引所做的探讨,因此下面只要说到索引,都是指B树索引。
????? B树索引是一个典型的树结构,其包含的组件主要是:
????? 1) 叶子节点(Leaf node):包含条目直接指向表里的数据行。
???? ?2) 分支节点(Branch node):包含的条目指向索引里其他的分支节点或者是叶子节点。
????? 3) 根节点(Root node):一个B树索引只有一个根节点,它实际就是位于树的最顶端的分支节点。
可以用下图一来描述B树索引的结构。其中,B表示分支节点,而L表示叶子节点。
?
????? 对于分支节点块(包括根节点块)来说,其所包含的索引条目都是按照顺序排列的(缺省是升序排列,也可以在创建索引时指定为降序排列)。每个索引条目(也可以叫做每条记录)都具有两个字段。第一个字段表示当前该分支节点块下面所链接的索引块中所包含的最小键值;第二个字段为四个字节,表示所链接的索引块的地址,该地址指向下面一个索引块。在一个分支节点块中所能容纳的记录行数由数据块大小以及索引键值的长度决定。比如从上图一可以看到,对于根节点块来说,包含三条记录,分别为(0 B1)、(500 B2)、(1000 B3),它们指向三个分支节点块。其中的0、500和1000分别表示这三个分支节点块所链接的键值的最小值。而B1、B2和B3则表示所指向的三个分支节点块的地址。
????? 对于叶子节点块来说,其所包含的索引条目与分支节点一样,都是按照顺序排列的(缺省是升序排列,也可以在创建索引时指定为降序排列)。每个索引条目(也可以叫做每条记录)也具有两个字段。第一个字段表示索引的键值,对于单列索引来说是一个值;而对于多列索引来说则是多个值组合在一起的。第二个字段表示键值所对应的记录行的ROWID,该ROWID是记录行在表里的物理地址。如果索引是创建在非分区表上或者索引是分区表上的本地索引的话,则该ROWID占用6个字节;如果索引是创建在分区表上的全局索引的话,则该ROWID占用10个字节。
????? 知道这些信息以后,我们可以举个例子来说明如何估算每个索引能够包含多少条目,以及对于表来说,所产生的索引大约多大。对于每个索引块来说,缺省的PCTFREE为10%,也就是说最多只能使用其中的90%。同时9i以后,这90%中也不可能用尽,只能使用其中的87%左右。也就是说,8KB的数据块中能够实际用来存放索引数据的空间大约为6488(8192×90%×88%)个字节。
????? 假设我们有一个非分区表,表名为warecountd,其数据行数为130万行。该表中有一个列,列名为goodid,其类型为char(8),那么也就是说该goodid的长度为固定值:8。同时在该列上创建了一个B树索引。
在叶子节点中,每个索引条目都会在数据块中占一行空间。每一行用2到3个字节作为行头,行头用来存放标记以及锁定类型等信息。同时,在第一个表示索引的键值的字段中,每一个索引列都有1个字节表示数据长度,后面则是该列具体的值。那么对于本例来说,在叶子节点中的一行所包含的数据大致如下图二所示:
?
?
????? 从上图可以看到,在本例的叶子节点中,一个索引条目占18个字节。同时我们知道8KB的数据块中真正可以用来存放索引条目的空间为6488字节,那么在本例中,一个数据块中大约可以放360(6488/18)个索引条目。而对于我们表中的130万条记录来说,则需要大约3611(1300000/360)个叶子节点块。
而对于分支节点里的一个条目(一行)来说,由于它只需保存所链接的其他索引块的地址即可,而不需要保存具体的数据行在哪里,因此它所占用的空间要比叶子节点要少。分支节点的一行中所存放的所链接的最小键值所需空间与上面所描述的叶子节点相同;而存放的索引块的地址只需要4个字节,比叶子节点中所存放的ROWID少了2个字节,少的这2个字节也就是ROWID中用来描述在数据块中的行号所需的空间。因此,本例中在分支节点中的一行所包含的数据大致如下图三所示:
?
?
?2.????B树索引的内部结构
我们可以使用如下方式将B树索引转储成树状结构的形式而呈现出来:
alter session set events 'immediate trace name treedump level INDEX_OBJECT_ID';
??????比如,对于上面的例子来说,我们把创建在goodid上的名为idx_warecountd_goodid的索引转储出来。
SQL> select object_id from user_objects where object_name='IDX_WARECOUNTD_GOODID';
?OBJECT_ID
----------
?????7378
SQL> alter session set events 'immediate trace name treedump level 7378';
??????打开转储出来的文件以后,我们可以看到类似下面的内容:
----- begin tree dump
branch: 0x180eb0a 25225994 (0: nrow: 9, level: 2)
??branch: 0x180eca1 25226401 (-1: nrow: 405, level: 1)
?????leaf: 0x180eb0b 25225995 (-1: nrow: 359 rrow: 359)
?????leaf: 0x180eb0c 25225996 (0: nrow: 359 rrow: 359)
?????leaf: 0x180eb0d 25225997 (1: nrow: 359 rrow: 359)
?????leaf: 0x180eb0e 25225998 (2: nrow: 359 rrow: 359)
…………………
??branch: 0x180ee38 25226808 (0: nrow: 406, level: 1)
?????leaf: 0x180eca0 25226400 (-1: nrow: 359 rrow: 359)
?????leaf: 0x180eca2 25226402 (0: nrow: 359 rrow: 359)
?????leaf: 0x180eca3 25226403 (1: nrow: 359 rrow: 359)
?????leaf: 0x180eca4 25226404 (2: nrow: