日期:2014-05-16  浏览次数:20609 次

linux内核--自旋锁的理解

http://blog.chinaunix.net/uid-20543672-id-3252604.html

自旋锁:如果内核配置为SMP系统,自旋锁就按SMP系统上的要求来实现真正的自旋等待,但是对于UP系统,自旋锁仅做抢占和中断操作,没有实现真正的“自旋”。如果配置了CONFIG_DEBUG_SPINLOCK,那么自旋锁按照SMP系统来编译。

    但是为什么在UP系统中不需要真正的“带有自旋的”自旋锁呢?其实在理解了自旋锁的概念和由来,这个问题就迎刃而解了。所以我重新查找了关于自旋锁的资料,认真研究了自旋锁的实现和相关内容。


  • 一、自旋锁spinlock的由来

   众所周知,自旋锁最初就是为了SMP系统设计的,实现在多处理器情况下保护临界区。所以SMP系统中,自旋锁的实现是完整的本来面目。但是对于UP系统,自旋锁可以说是SMP版本的阉割版。因为只有SMP系统中的自旋锁才需要真正“自旋”。

  • 二、自旋锁的目的

    自旋锁的实现是为了保护一段短小的临界区操作代码,保证这个临界区的操作是原子的,从而避免并发的竞争冒险。在Linux内核中,自旋锁通常用于包含内核数据结构的操作,你可以看到在许多内核数据结构中都嵌入有spinlock,这些大部分就是用于保证它自身被操作的原子性,在操作这样的结构体时都经历这样的过程:上锁-操作-解锁。

      如果内核控制路径发现自旋锁“开着”(可以获取),就获取锁并继续自己的执行。相反,如果内核控制路径发现锁由运行在另一个CPU上的内核控制路径“锁着”,就在原地“旋转”,反复执行一条紧凑的循环检测指令,直到锁被释放。 自旋锁是循环检测“忙等”,即等待时内核无事可做(除了浪费时间),进程在CPU上保持运行,所以它保护的临界区必须小,且操作过程必须短。不过,自旋锁通常非常方便,因为很多内核资源只锁1毫秒的时间片段,所以等待自旋锁的释放不会消耗太多CPU的时间。

  • 三、自旋锁需要做的工作

     从保证临界区访问原子性的目的来考虑,自旋锁应该阻止在代码运行过程中出现的任何并发干扰。这些“干扰”包括:

     1、中断,包括硬件中断和软件中断(仅在中断代码可能访问临界区时需要)