日期:2014-05-16 浏览次数:20952 次
引言
我觉得ORPSoC的关键在于‘P’,即programmable。SoC的有优势就在于只要是满足总线interface的ip,可以实现plug & work。
所以一旦完成前面的工作之后,添加属于自己的ip core到ORPSoC的wishbone总线上,并编写它对应的驱动就成为非常关键的一步。
本小节就做一个简单的例子,来说明需要完成的工作步骤及其中遇到的问题和对应的解决方法。
11.1 编写wishbone为interface的ip core(ip_mkg)
1》这一步请参考:
http://blog.csdn.net/rill_zhen/article/details/8659788
2》将其中的my_slave_module链接到ORPSoC的wishbone上。
11.2 编写linux下的driver module
代码及makefile如下:
1》ip_mkg.c
/*
*
* rill mkg driver
*
*/
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <asm/uaccess.h> /* get_user and put_user */
//#include <linux/clk.h>
//#include <linux/ioport.h>
#include <asm/io.h> /*ioremap*/
#include <linux/platform_device.h> /*cleanup_module*/
#include "ip_mkg.h"
void __iomem *g_mkg_mem_base = NULL;
static int device_open(struct inode *inode, struct file *file)
{
g_mkg_mem_base = ioremap(MKG_MEM_BASE,MKG_MEM_LEN);
if(NULL == g_mkg_mem_base)
{
printk(KERN_ERR "mkg open ioremap error!\n");
return -1;
}
else
{
printk("mkg ioremap addr:%d!\n",(int)g_mkg_mem_base);
}
return 0;
}
static int device_release(struct inode *inode, struct file *file)
{
return 0;
}
static ssize_t device_read(struct file *filp, char *buffer, size_t length, loff_t *offset)
{
return 0;
}
static ssize_t device_write(struct file *filp, const char *buffer, size_t count, loff_t *offset)
{
return 0;
}
long device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param)
{
int ret_val = 0;
unsigned int ret = 0;
struct reg_data *new_regs;
switch(ioctl_num)
{
case IOCTL_REG_SET:
{
new_regs = (struct reg_data*)kmalloc(sizeof(struct reg_data), GFP_KERNEL);
if((ret_val = copy_from_user(new_regs, (struct reg_data*)ioctl_param, sizeof(struct reg_data))) != 0)
{
kfree(new_regs);
printk(KERN_ERR " error copy line_datafrom user.\n");
return -1;
}
iowrite16(new_regs->value,g_mkg_mem_base+new_regs->addr);
kfree(new_regs);
}
break;
case IOCTL_REG_GET:
{
new_regs = (struct reg_data*)kmalloc(sizeof(struct reg_data), GFP_KERNEL);
if((ret_val = copy_from_user(new_regs, (struct reg_data*)ioctl_param, sizeof(struct reg_data))) != 0)
{
kfree(new_regs);
printk(KERN_ERR " error copy line_datafrom user.\n");
return -1;
}
ret = ioread16(g_mkg_mem_base+new_regs->addr);
kfree(new_regs);
return ret;
}
break;
}
return -1;
}
struct file_operations our_file_ops = {
.unlocked_ioctl = device_ioctl,
.read = device_read,
.write = device_write,
.open = device_open,
.release = device_release,
.owner = THIS_MODULE,
};
int init_module()
{
int ret_val;
int ret;
void __iomem *ret_from_request;
//=== Allocate character device
ret_val = register_chrdev(MAJOR_NUM, DEVICE_NAME, &our_file_ops);
if (ret_val < 0)
{
printk(KERN_ALERT " device %s failed(%d)\n", DEVICE_NAME, ret_val);
return ret_val;
}
ret = check_mem_region(MKG_MEM_BASE, MKG_MEM_LEN);
if (ret < 0)
{
printk(KERN_ERR "mkg check_mem_region bussy error!\n");
return -1;
}
ret_from_request = request_mem_region(MKG_MEM_BASE, MKG_MEM_LEN, "ip_mkg");
//===ioremap mkg registers
g_mkg_mem_base = ioremap(MKG_MEM_BASE,MKG_MEM_LEN);
if(NULL == g_mkg_mem_base)
{
printk(KERN_ERR "mkg ioremap error!\n");
return -1;
}
else
{
;//printk("mkg ioremap addr:%d!\n",g_mkg_mem_base);
}
printk("mkg module init done!\n");
return 0;
}
void cleanup_module()
{
release_mem_region(MKG_MEM_BASE, MKG_MEM_LEN);
unregister_chrdev(MAJOR_NUM, DEVICE_NAME);
}