kmeans算法是一种经典的聚类算法,其核心思想是:根据给定的聚类个数k,随机选择k个点作为初始的中心节点,然后按照样本中其他节点与这k个节点的距离进行分类。每分类一次就重新计算一次k个中心节点,直到所有样本中的节点所属的分类不再变化为止。
代码:
public class KmeansAlgorithm {
private static final int T = 10; // 最大迭代次数
private static final double THRESHOLD = 0.1; // 中心节点位置变化大小的阈值
public ArrayList<ArrayList<Double>> getClusters(ArrayList<ArrayList<Double>> dataSet, int k) {
int dataDimension = 0;
if(null != dataSet && dataSet.size() < k) {
System.out.println("data size is smaller than the number to be clustered");
} else {
dataDimension = dataSet.get(0).size();
}
// 为每条数据赋初始类别0
for(int i = 0; i < dataSet.size(); i++) {
dataSet.get(i).add(0d);
}
// 随机从数据集中选注k个点作为初始的k个中心节点
ArrayList<ArrayList<Double>> centerData = new ArrayList<ArrayList<Double>>();
for(int i = 0; i < k; i++) {
centerData.add(dataSet.get(i));
}
for(int i = 0; i < T; i++) {
for(int j = 0; j < dataSet.size(); j++) {
double classify = 0; // classify取值为0到k-1代表k个类别
double minDistance = computeDistance(dataSet.get(j), centerData.get(0));
for(int l = 1; l < centerData.size(); l++) {
if(computeDistance(dataSet.get(j), centerData.get(l)) < minDistance) {
minDistance = computeDistance(dataSet.get(j), centerData.get(l));
classify = l;
}
}
dataSet.get(j).set(dataDimension, classify);
}
// 每次分类后计算中心节点的位置变化情况
double variance = computeChange(dataSet, centerData, k, dataDimension);
if(variance < THRESHOLD) {
break;
}
// 每次分类后重新计算中心节点
centerData = computeCenterData(dataSet, k, dataDimension);
}
return dataSet;
}
/**
*
* @Title: computeDistance
* @Description: 计算任意两个节点间的距离
* @return double
* @throws
*/
public double computeDistance(ArrayList<Double> d1, ArrayList<Double> d2) {
double squareSum = 0;
for(int i = 0; i < d1.size() - 1; i++) {
squareSum += (d1.get(i) - d2.get(i)) * (d1.get(i) - d2.get(i));
}
return Math.sqrt(squareSum);
}
/**
*
* @Title: computeCenterData
* @Description: 计算中心节点
* @return ArrayList<Double>
* @throws
*/
public ArrayList<ArrayList<Double>> computeCenterData(ArrayList<ArrayList<Double>> dataSet, int k, int dataDimension) {
ArrayList<ArrayList<Double>> res = new ArrayList<ArrayList<Double>>();
for(int i = 0; i < k; i++) {
int ClassNum = 0;
ArrayList<Double> tmp = new ArrayList<Double>();
for(int l = 0; l < dataDimension; l++) {
tmp.add(0d);
}
for(int j = 0; j < dataSet.size(); j++) {
if(dataSet.get(j).get(dataDimension) == i) {
ClassNum++;
for(int m = 0; m < dataDimension; m++) {
tmp.set(m, tmp.get(m) + dataSet.get(j).get(m));
}
}
}
for(int l = 0; l < dataDimension; l++) {
tmp.set(l, tmp.get(l) / (double)ClassNum);
}
res.add(tmp);
}
return res;
}
/**
*
* @Title: computeChange
* @Description: 计算两轮迭代中心节点位置的变化量
* @return double
* @throws
*/
public double computeChange(ArrayList<ArrayList<Double>> dataSet, ArrayList<ArrayList<Double>> centerData, int k, int dataDimension) {
double variance = 0;
ArrayList<ArrayList<Double>> originalCenterData = computeCenterData(dataSet, k, dataDimension);
for(int i = 0; i < centerData.size(); i++) {
variance += computeDistance(originalCenterData.get(i), centerData.get(i));
}
return variance;
}
public static void main(String[] args) {
final int CLUSTER1_NUM = 4;
final int CLUSTER2_NUM = 4;
final int CLUSTER3_NUM = 4;
ArrayList<ArrayList<Double>> dataSet = new ArrayList<ArrayList<Double>>();
// 产生簇1
for(int i = 0; i < CLUSTER1_NUM; i++) {
ArrayList<Double> cluster1 = new ArrayLi